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Abstract

The main objective of this dissertation is to focus on a numerical study of magneto-

hydrodynamic (MHD) tangent hyperbolic nanofluid past a stretching sheet with

convective boundary condition. Impact of joule heating and chemical reaction

has also been incorporated. A mathematical model which resembles the physical

flow problem has been developed. Similarity transformations are used to convert

partial differential equations (PDEs) into a system of nonlinear ordinary differ-

ential equations (ODEs). The resulting system of ordinary differential equations

(ODEs) is solved numerically by using shooting method and obtained numerical

results are compared with Matlab bvp4c built in function, which shows an excellent

agreement. Effects of various physical parameters on the dimensionless velocity,

temprature, and concntration profiles are shown in the form of graphs. Numer-

ical values of skin friction coefficient, Nusselt number (heat transfer rate), and

Sherwood number (mass transfer rate) are also computed. The effects of different

physical parameters on the flow and heat transfer characteristics are discussed in

detail.
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Chapter 1

Introduction

The layer in which viscous effects are more significant is named as boundary layer

around which the fluid is flowing. In 1904 Ludwing Prandtl at third international

conference in Germany presented the idea of boundary layer. Boundary layer is

universal in a number of natural flows and now a days concept of fluid flow using

in engineering applications, such as extrusion of plastic, glass blowing, the earth’s

atmosphere, ship and air vehicles etc [1]. A fluid flow problem related to boundary

layer approximation considered along the stretching sheet was first discussed by

Skiadis [2]. The flow past a stretching surface was examined by Crane [3]. Dan-

dapat and Gupta [4] analyzed the heat transfer flow in a viscoelastic fluid along

a stretching sheet. It was concluded that temperature profile is decreased by in-

creasing the values of the Prandtl number. Over a continuous solid surface, the

behaviour of boundary layer was analyzed in detail and compared it with moving

surface of finite length. Fluid flow has various types of states for example, uni-

form or non-uniform, compressible or incompressible, rotational or irrotational,

steady or unsteady, viscous or inviscid etc, Genick [5]. Study of fluid flow over

a stretching surface has great importance in engineering applications, electronic

devices, metal spinning, extrusion etc. Fluid flow passing through stretching sheet

is a phenomenon of keen interest for many researchers, for example it includes the

study of Zheng et al. [6], Gireesha et al. [7] and Shehzad et al. [8] due to its wide

application as described above.

1
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The study of magnetic properties for electrically conducting fluids is called magneto-

hydrodynamics (MHD). The idea of MHD fluid flow was first introduced by Physi-

cist, Alfven [9]. Rashidi et al. [10] ascertained the MHD flow of nanofluid over a

stretching sheet with impact of thermal radiation. They reported that tempera-

ture profile increases with the impact of nanoparticles present in the base fluid.

Magneto-hydrodynamic has a lot of applications in different fields of engineer-

ing like cooling of reactors, design for heat exchangers, a power generator and

MHD accelerator as discussed by Hari et al. [11]. Zhang et al. [12] investigated

the MHD flow and radiation heat transfer of nanofluids with chemical reaction

and variable surface heat flux. They concluded that radiations and magnetic

field have significant impact on velocity field, for increasing values of magnetic

field fluid, the velocity decreases. Ibrahim and Suneetha [13] investigated the

impact of Joule heating and also explained about viscous dissipation on MHD

convective flow over a surface considering the effect of radiation. By investigating

the magneto-micropolar nanofluids under the effect of variable thermal diffusiv-

ity, Bilal et al. [14] concluded that for increasing values of permeability param-

eter, velocity components like angular velocity and velocity distribution over a

stretching surface including stream velocity were all enhanced. Hayat et al. [15]

explored the impact of chemical reaction in magneto-hydrodynamic flow through

a nonlinear radially stretching surface. They analyzed that the Nusselt number

is an increasing function of power-law index. Atif et al. [16] explored the idea

of magneto-hydrodynamic micropolar Carreu nanofluid having the properties of

induced magnetic field and concluded that thermal profile increases for enhancing

values of the Browninan motion parameter.

A liquid containing nanometer-sized particles is called nanofluid. These parti-

cles are termed as nanoparticles ranges between 1 to 100 nanometer in size. To

enhance the base fluid’s thermal conductivity like ethylene glycol, water, propy-

lene glycol etc, nanofluids are used. Choi and Eastman [17] introduced the idea

of improving the thermal conductivity by including the nanoparticles . Choi et

al. [18] investigated that thermal conductivity of heat transfer fluids enhanced

by addition of small amount of nanoparticles. Nanoparticles are typically made
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of carbides (SiC), nonmetals (carbon nanotubes), metals (Al, Cu) and the base

fluid is usually taken as water, ethylene glycol etc. [19]. Izadi et al. [20] numer-

ically investigated the laminar forced convective flow of nanofluid in an anuulus.

They have many biomedical and engineering applications, e.g., in cancer ther-

apy, process industries, nuclear reactors, microelectronics as discussed by Wong et

al. [21]. Nayak et al. [22] investigated the magneto-hydrodynamic flow of nanoflu-

ids through a stretching sheet including the impact of thermal radiation. In their

study, it was reported that the velocity field is enhanced for increasing values of

the buoyancy parameter.

In the last few decades, many researchers paid their attention to non-Newtonian

fluid because of its wider applications. Tangent hyperbolic fluid is one of the most

important categories of non-Newtonian fluid, that has ability to characterise the

shear thinning behaviour Kumar et al. [23]. Materials including whipped cream,

ketchup, paints and lava [24] are some example of this type of fluid. Rehman et

al. [25] scrutinized the combined effects of thermal radiation and stratification of

tangent hyperbolic fluid and reported that the temperature of tangent hyperbolic

fluid is enhanced for increasing values of thermal radiation parameter. Shafiq et

al. [26] explored the bioconvective magneto-hydrodynamic fluid flow of tangent

hyperbolic fluid including microorganisim under the effect of magnetic field and

concluded that for increasing values of thermophoresis parameter energy distri-

bution also increases. Salahuddin et al. [1] investigated the tangent hyperbolec

nanofluid considering the stagnation point taken along stretching cylinder and re-

ported that for greater values of the Lewis number show increasing behaviour of

Sherwood number. Naseer et al. [27] explored the idea of tangent hyperbolic fluid

for momentum boundary layer flow through a stretching cylinder. In their study, it

was noted as values of prandtl number increased temperature field also increased.

Impact of Lorentz forces on tangent hyperbolic fluid flow past a stretching sheet

was examined by Prabhakar et al. [28]. They reported that for increasing val-

ues of Brownian motion parameter an decrement is shown in the concentration of

nanoparticles.
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Kandasamy et al. [29] explored the combined effects of heat transfer rate and

chemical reaction over a wedge with suction or injection. It was observed that the

flow field is highly influenced by chemical reaction, suction and heat source at the

wall of the wedge. Alam et al. [30] studied the combined effects of thermophoresis

and chemical reaction on heat transfer and mixed convective mass flow along an

inclined plate including the impact of Joule heating and additional effect of viscous

dissipation. They concluded that mass flux of particle is as small as the stream

velocity and temperature profile are not influenced by thermophysical phenomenon

experienced by relatively small number of paticles. Abbas et al. [31] investigated

the analytical solution of binary chemical reaction considering the stagnation point

flow for Casson fluid with thermal effect. Some further studies related to chemical

reactions have been discussed in Refs. [32, 33].

The demonstration of this thesis is to explore the mathematical results of magneto-

hydrodynamic fluid flow of hyperbolic fluid through a stretched layer including

convective boundary conditions. The set of non-linear partial differential equa-

tions (PDEs) are converted into a set of governing ordinary differential equations

(ODEs) by use of applicable transformation called similarity transformation. Us-

ing MATLAB function bvp4c and the shooting technique various numerical results

are validated. Further impact of different parameters are disscused through graphs

and tables in detail.

Layout of Thesis

This dissertation is further composed of the following chapters.

Chapter 2 includes some basic definitions and physical parameters which are

useful for upcoming work and discusses the numerical technique which will be

used to solve the dominant equations.

Chapter 3 provides the review work of research paper of Ibrahim [34] in which the

study has been carried out for magneto-hydrodynamic flow of hyperbolic fluid over
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a stretching sheet including slip conditions. The bvp4c code which is MATLAB

built-in function has been used for computing the solution of nonlinear ODEs.

Numerical results for various parameters are compiled through tables and graphs.

Chapter 4 extends the work of [34] for the impact of chemical reaction and

Joule heating. By utilizing similarity transformation we transform the set of gov-

erning nonlinear PDEs in to the nonlinear ODEs. Results for various parameters

are discussed through graphs and tables.

Chapter 5 summarizes the whole study with concluding remarks.



Chapter 2

Basic Terminologies and

Governing Equations

In this chapter, some basic definitions, laws and dimensionless numbers are ex-

plained, which will be helpful in continuing the work for the next chapters. Ref-

erences which are used for definitions are: [5, 35–40]

2.1 Fluid Flows

Definition 2.1. (Fluid)

“A fluid is a substance that deforms continuously under the application of a shear

(tangential) stress no matter how small the shear stress may be.”

Definition 2.2. (Fluid Mechanics)

“Fluid mechanics is that branch of science which deals with the behaviours of the

fluids (liquids or gasses) at rest or in motion.

Fluid mechanics further divided into two types:

1. Fluid Statistic

2. Fluid Dynamics”

6
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Definition 2.3. (Fluid Statics)

“Fluid statics is a branch of fluid mechanics that deals with the fluid and its

properties at constant position is known as fluid statics.”

Definition 2.4. (Fluid Dynamics)

“The branch of mechanics that deals with the characteristics of fluid in state of

progression from one place to another place is known as fluid dynamics.”

Definition 2.5. (Viscosity)

“There is a property that represents the internal resistance of a fluid to motion or

the fluidity, and that property is the viscosity. The force a flowing fluid exert on

a body is called drag force and the magnitude of this force depends, in part, on

viscosity.”

Mathematically,

viscosity(µ) =
shear stress

shear strain
. (2.1)

Definition 2.6. (Kinematic Viscosity)

“It is defined as the ratio between the dynamic viscosity and density of fluid. It

is denoted by Greek symbol ν called ‘nu’.

Mathematically,

ν =
µ

ρ
. (2.2)

The dimension of kinematic viscosity is given as: [L2T−1].”

2.2 Types of Fluid

Definition 2.7. (Ideal fluid)

“A fluid, which is incompressible and is having no viscosity, is known as an ideal

fluid. ideal fluid is only an imaginary fluid as all the fluid, which exist, have some

viscosity.”

Definition 2.8. (Real fluid)

“A fluid, which possesses viscosity, is known as real fluid. In actual practice, all

the fluids, are real fluids.”
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Definition 2.9. (Newtonian fluid)

“A real fluid, in which the shear stress is directly, proportional to the rate of shear

strain(or velocity gradient), is known as a Newtonian fluid.”

Definition 2.10. (Non-Newtonian fluid)

“A real fluid, in which the shear stress is not proportional to the rate of shear

strain(or velocity gradient), is known as a non-Newtonian fluid.” Mathematically,

it can be expressed as:

τxy ∝
(
du

dy

)m
, m 6= 1

τyx = µ

(
du

dy

)m
, (2.3)

there are some examples of non-Newtonian fluid:

Maxwell fluid, Tangent hyperbolic fluid, Micropolar fluid etc.

Definition 2.11. (Flow)

“Flow is defined as, the deformation of material under the effect of different forces.

As deformation increases continuously without limitations that process is called

flow.”

2.3 Types of Flow

Definition 2.12. (Laminar Flow)

“The highly ordered fluid motion characterized by smooth layers of fluid is laminar.

The word laminar comes from the movement of adjacent fluid particles together in

laminates. The flow of high-viscosity fluid such as oils at low velocities is typically

laminar flow.”

Definition 2.13. (Turbulent Flow)

“The highly disordered fluid motion that typically occurs at high velocities and

is characterized by velocity fluctuations is called turbulent flow. The flow of low-

viscosity fluid such as air at high velocity is typically turbulent.”
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Definition 2.14. (Compressible Flow)

“Compressible flow are one in which level of variation in density is negligible. Flow

of gasses is one of the best example.” Mathematically,

ρ(x, y, z, t) 6= k, k is constant

Definition 2.15. (Incompressible Flow)

“A flow is said to be incompressible if the density remains nearly constant through-

out. Therefor, the volume of every portion of fluid remain unchanged over the

course of its motion when the flow is incompressible.” Mathematically,

ρ(x, y, z, t) = k, k is constant

Definition 2.16. (Internal Flow)

“If the fluid is completely bounded by a solid surfaces that flow is called internal

flow. The flow in a pipe or duct is an example of internal flow. Internal flows are

dominated by the influence of viscosity throughout the flow field.”

Definition 2.17. (External Flow)

“The flow of an unbounded fluid over a surface such as plate, a wire or a pipe is

an external flow. In external flow the viscous effects are limited to boundary layer

near solid surfaces.”

Definition 2.18. (Steady Flow)

“A steady flow is one, in which properties of the fluid are independent of time.”

Mathematically,
dχ

dt
= 0,

where property of fluid is denoted by χ.

Definition 2.19. (Unsteady Flow)

“A fluid flow in which fluid properties are dependent of time is known as unsteady

flow.” Mathematically, it can be written as

dχ

dt
6= 0,
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where property of fluid is denoted by χ.

2.4 Some Basic Definitions of Heat Transfer

Definition 2.20. ( Conduction)

“In a thermal system heat conduction manifests itself as a thermal field. The

thermal field can be steady or unsteady, linear or non-linear, with inner source

or without them, with moveable or stationary borders, with basic, composed or

combined boundary conditions or with phase conversion. Biot number is one of

the example of conduction number.”

Definition 2.21. (Convection)

“The mechanism in which fluid is forced by external processes and when thermal

energy expands in gravitational fields by the interaction of buoyancy forces is

called convection. In other words, convection is the process in which heat transfer

occurs due to the motion of molecules within the fluid such as air, water etc. The

convection phenomena take place through diffusion or advection.” Mathematically,

it is expressed as

q = hA(Ts − T∞)

where h indicates the rate of heat transfer coefficient, A indicates the relevant

area, Ts indicates temperature at the surface and T∞ shows the temperature

away from the surface. It is divided in to following three categories further which

are given as,

Definition 2.22. (Force Convection)

“Forced convection is characterized by a flow with mutual action of inertia and

viscous forces. The Reynolds number, Nusselt and Prandtal are some basic char-

acteristics of forced convection.”

Definition 2.23. (Natural Convection)

“In natural convection, the dimensionless quantities express the spontaneous heat

flow in fluid or gasses due to the thermal difference caused by the difference of fluid
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density. Natural convection occurs in a atmosphere in ocean and near the surface

of heated or cooled bodies for example, Archimedes and Schwarzschild number are

characteristics.”

Definition 2.24. (Mixed Convection)

“A flow mechanism which is simultaneously contributed by both force and free

convection processes and acting simultaneously. Mixed convection is always real-

ized when small number of velocities are characterized on calling and heating of

walls.”

2.5 Thermal Conductivity and Diffusivity

Definition 2.25. (Thermal Conductivity)

“It is property of a material related to its capacity to conduct the heat. Fourier

law of conduction which reveals that the rate of heat transfer by conduction to

temperature gradient is
dQ

dt
= −kAdT

dx
, (2.4)

where A, dQ
dt

, k, and dT
dx

represent area, thermal conductivity, temperature and the

rate of heat transfer, respectively. Thermal conductivity of most liquids decreases

with the increase of temperature except water. The SI unit of thermal conductivity

is Kg.m
s3

and the dimension of thermal conductivity is [MLT−3].”

Definition 2.26. (Thermal Diffusivity)

“The ratio of unsteady heat conduction (k) of a substance to the product of spe-

cific heat capacity (cp) and density (ρ) is called thermal diffusivity. It quantify the

ability of a substance to transfer heat rather to store it.

Mathematically, it can be written as

α =
k

ρcp
”
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2.6 Dimensionless Numbers

Definition 2.27. (Biot Number)

“Biot number expresses the ratio of heat flow transferred by convection on a body

surface to the heat flow transferred by conduction in a body.” Mathematically, it

is represented by Bi,

Bi =
hL

λ
(2.5)

where h-heat transfer coefficient; L-characteristic length and λ is thermal conduc-

tivity.

Definition 2.28. (Reynolds Number)

“It is the most significant dimensionless number which is used to analyze the

different flow behaviors like laminar or turbulent flow. It helps to measure the

ratio between inertial force and the viscous force. Mathematically,

Re =
ρU2

L
µU
L2

=⇒ Re =
LU∞
ν

, (2.6)

here U∞ denotes the free stream velocity, L-the characteristics length and ν is the

kinematic viscosity. At low Reynolds number laminar flow arises, where viscous

forces are dominant. At high Reynolds number turbulent flow arises, where inertial

forces are dominant.”

Definition 2.29. (Prandtl Number)

“This number expresses the ratio of the momentum diffusivity (viscosity) to the

thermal diffusivity. It characterizes the physical properties of a fluid with con-

vective and diffusive heat transfer. It describes, for example, the phenomena

connected with energy transfer in a boundary layer. It expresses the degree of

similarity between velocity and diffusive thermal fields or, alternatively, between

hydrodynamic and thermal boundary layer.

Pr =
ν

α
, (2.7)

Where kinematic viscosity is denoted by ν and α defines the thermal diffusivity.”
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Definition 2.30. (Weissenberg Number)

“The Weissenberg number is typically defined as We = λu
L

where u and L are a

characteristic velocity and length scale for the flow.

The Weissenberg number indicates the relative importance of fluid elasticity for a

given flow problem.”

Definition 2.31. (Nusselt Number)

“It is the ratio of total heat transfer in a system to the heat transfer by conduction.

In characterizes the heat transfer by convection between a fluid and environment

close to it or, alternatively, the connection between the heat transfer intensity and

the temperature field in a flow boundary layer.”

Nusselt number represent dimensionless thermal transference. It is represented by

Nu, Mathematically,

Nu =
αL

λ
, (2.8)

where α(wm−2k−1) denotes heat transfer coefficient, L(m) denotes the character-

istic length and λ(wm−1k−1) denotes the thermal conductivity.

Definition 2.32. (Thermophoresis Parameter)

“In a temperature gradient, small particles are pushed towards the lower temper-

ature because of the asymmetry of molecular impacts.

The resulting force which drives the particles along a temperature gradient to-

wards the lower temperature, is called thermophoretic force and the mechanism

thermophoresis.”

Definition 2.33. (Eckert Number)

“It expresses the ratio of kinetic energy to a thermal energy change.”

Mathematically,

Ec =
W 2
∞

cp4T
(2.9)

where W∞-fluid flow velocity far from body; cp-specific heat capacity of fluid and

4T is temperature difference.
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2.7 Fundamental Equations of Flow

Definition 2.34. (Continuity Equation)

“The conservation of mass of fluid entering and leaving the control volume, the

resulting mass balance is called the equation of continuity. From this law it is

concluded that mass is conserved. Mathematically form is

∂ρ

∂t
+∇. (ρ U) = 0.

where, U is velocity of fluid.

For steady case rate of time will be constant, so continuity equation becomes

∇. (ρ U) = 0.

For the case of incompressible flow, density does not changes so continuity equation

can be re-write as,

∇. U = 0.”

Definition 2.35. (Law of Conservation of Momentum)

It is based on the momentum principle, which states that,

“The net force acting on a fluid mass is equal to the change in momentum of flow

per unit time in that direction. Mathematical form of this law is

ρ
DU

Dt
= ρ b +∇. T , (2.10)

For Navier-Stokes equation

T = −pI + τ, (2.11)

where τ is a tensor and it can be written as,

τ = µ
(
∇U + (∇U)t

∗)
. (2.12)

In the above equations, D
Dt

denotes material time derivative or total derivative, ρ

denotes density, U denotes velocity of fluid, Cauchy stress tensor represented by
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T , b is the body forces, p is the pressure and t∗ is transpose of matrix. Matrix

form of Cauchy stress tensor is

τ =


σxx τxy τxz

τxy σyy τyz

τzx τzy σzz

 , (2.13)

For two-dimensional flow, we have U = [u(x, y, 0), v(x, y, 0), 0] and thus

∇U =


∂u
∂x

∂v
∂x

0

∂u
∂y

∂v
∂y

0

0 0 0

 , (2.14)

(∇U)t
∗

=


∂u
∂x

∂u
∂y

0

∂v
∂x

∂v
∂y

0

0 0 0

 . (2.15)

Substituting Eqs. (2.14) and (2.15) into Eq. (2.12) and then in Eq. (2.11) it is

found that:

Txx = −p+ 2µ
∂µ

∂x
(2.16)

Txy = µ

(
∂ν

∂x
+
∂u

∂y

)
. (2.17)

Using Eqs. (2.16) to (2.17) in Eq. (2.10), we get two-dimensional Naiver-Stokes

equation for u component.

ρ
Du

Dt
= ρbx −

∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
(2.18)

Similarly, by repeating the above process for v component, we get

ρ
Dv

Dt
= ρby −

∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
.” (2.19)

Definition 2.36. (Law of Conservation of Energy)
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The basic principle of conservation of energy is that, “Energy can neither cre-

ated nor destroyed, it can be transformed from one form to another form but

total amount of an isolated system remains constant i.e. energy is conserved over

time. It is the fundamental law of physics which is also known as the first law of

thermodynamics.

The mathematical form of energy equation in two-dimensional for fluid can be

written as, (
u
∂T

∂x
+ v

∂T

∂y

)
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+

µ

ρCp
Φ∗” (2.20)

where Φ∗ is dissipation function.

2.8 Solution Methodology

“Shooting Method is used to solve the higher order nonlinear ordinary differential

equations. To implement this technique, we first convert the higher order ODEs

to the system of first order ODEs. After that we assume the missing initial con-

ditions and the differential equations are then integrated numerically using the

Runge-Kutta method as an initial value problem. The accuracy of the assumed

missing initial condition is then checked by comparing the calculated values of

the dependent variables at the terminal point with their given value there. If the

boundary conditions are not fulfilled up to the required accuracy, with the new

set of initial conditions, then they are modified by Newtons method. The process

is repeated again until the required accuracy is achieved. To explain the shooting

method, we consider the following general second order boundary value problem,

y′′(x) = f(x, y, y′(x)) (2.21)

subject to the boundary conditions

y(0) = 0, y(L) = A. (2.22)
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[40] By denoting y by y1 and y′1 by y2, Eq. (2.21) can be written in the form of

following system of first order equations.

y′1 = y2, y1(0) = 0,

y′2 = f(x, y1, y2), y1(L) = A.

 (2.23)

Denote the missing initial condition by y2(0) = s, to have

y′1 = y2, y1(0) = 0,

y′2 = f(x, y1, y2), y2(0) = s.

 (2.24)

Now the problem is to find s such that the solution of the IVP (2.24) satisfies

the boundary condition y(L) = A. In other words, if the solutions of the initial

value problem (2.24) are denoted by y1(x, s) and y2(x, s), one should search for

that value of s which is an approximate root the equation.

y1(L, s)− A = φ(s) = 0. (2.25)

To find an approximate root of the Eq. (2.25) by the Newtons method, the itera-

tion formula is given by

sn+1 = sn −
φ(sn)

dφ(sn)/ds
, (2.26)

or,

sn+1 = sn −
y1(L, sn)− A
dy1(L, sn)/ds

. (2.27)

To find the derivatives of y1 with respect of s, differentiate (2.24) with respect to

s. For simplification, use the following notations

dy1

ds
= y3,

dy2

ds
= y4 (2.28)

y′3 = y4, y3(0) = 0,

y′4 =
∂f

∂y1

y3 +
∂f

∂y2

y4, y4(0) = 1.

 (2.29)
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Now, solving the IVP Eq. (2.29), the value of y3 at L can be computed. This

value is actually the derivative of y1 with respect to s computed at L. Setting the

value of y3(L, s) in Eq. (2.27), the modified value of s can be achieved. This new

value of s is used to solve the Eq. (2.24) and the process is repeated until the

value of s is within a described degree of accuracy.”



Chapter 3

MHD Tangent Hyperbolic

Nanofluid with Convective

Boundary Condition

In this chapter, we consider the MHD tangent hyperbolic nanofluid flow with free

convective boundary and second order slip condition. By means of an appropriate

transformation, the governing PDEs are transformed into dimensionless coupled

ODEs. These dimensionless ODEs have been solved by MATLAB built-in function

known as bvp4c. Impact of different parameters on the energy distribution, veloc-

ity distribution and concentration profile all are analyzed via tables and graphs.

Basically this chapter provides the review work of the Ref. [34].

3.1 Problem Formulation

We consider incompressible, 2D, nanofluid flow with the convective boundary con-

ditions through a stretching sheet. For the velocity taken at the surface, second

order slip condition is considered. Along x-axis we take stretching sheet with

stretching velocity uw = ax where the fluid flow is bounded by the region y > 0.

The temperature provided to the stretching surface is denoted by Tf with hf as

19
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the heat transfer coefficient, Cw is surface concentration, C∞ denotes the ambient

concentration and T∞ represents the ambient temperature. With the assumption

that no nanoparticles flux is present on the surface, the impact of thermophoresis

is incorporated along boundary condition. A magnetic field is applied normal to

the stretching surface having strength B0 as we can see in Figure 3.1 induced mag-

netic field is ignored with the assumptions of small values of magnetic Reynolds

number.

Figure 3.1: Schematic diagram of physical model.

Under the above constraints, the boundary layer equations of the tangent hyper-

bolic fluid with nanoparticles are given as [34]:

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= ν(1− n)

∂2u

∂y2
+
√

2νnΓ

(
∂u

∂y

)
∂2u

∂y2
− σB0

2u

ρ
, (3.2)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂y2

)
+ Λ

[
DB

(
∂C

∂y

)(
∂T

∂y

)
+
DT

T∞

(
∂T

∂y

)2]
− 1

(ρcp)f

∂qr
∂y

, (3.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

(
∂2T

∂y2

)
. (3.4)
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The related boundary conditions are as follows:

u = uw + Uslip, −k∂T
∂y

= hf (Tf − T ),

v = 0, DB
∂C

∂y
+
DB

T∞

∂T

∂y
= 0,

 at y = 0

U → U∞ = 0, v = 0, T → T∞, C → C∞ as y →∞,


(3.5)

where the slip velocity at the boundary layer is denoted by Uslip and is defined as:

Uslip = A
∂u

∂y
+B

∂2u

∂y2
. (3.6)

Here, A and B are constants.

In the above equations, ν represents kinematics velocity, ρ is the density, ρcp is the

effective heat capacity of a nanoparticle, n stands for the power-law index, Λ= ρcp
ρcf

where ρcf is fluid’s heat capacity and Γ denotes time constant.

It is worth mentioning that by taking power-law index zero, problem is trans-

formed into Newtonian fluid.

The velocity components in terms of the stream functions are given as

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.7)

In Eq. (3.3), the Rosseland approximation for heat flux qr is given as

qr = −4σ∗

3κ∗
∂T 4

∂y
. (3.8)

Here κ∗ stands for the absorption coefficient and σ∗ stands for Stefan Boltzmann

constant.

If temperature constant is very small, then T 4 might be expanded about T∞ by

utilizing Taylor series, given as:

T 4 = T 4
∞ +

4T 3
∞

1!
(T − T∞) +

12T 2
∞

2!
(T − T∞)2 +

24T∞
3!

(T − T∞)3 +
24

4!
(T − T∞)4 + . . .
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We will ignore the higher order terms ang get the form:

T 4 = T 4
∞ + 4T 3

∞(T − T∞)

⇒ T 4 = T 4
∞ + 4T 3

∞T − 4T 4
∞

⇒ T 4 = 4T 3
∞T − 3T 4

∞.

⇒ ∂T 4

∂y
= 4T 3

∞
∂T

∂y
. (3.9)

Using Eq. (3.9) in Eq. (3.8) and differentiating, we have the following form:

∂qr
∂y

=
−16σ∗T 3

∞
3k∗

∂2T

∂y2
. (3.10)

3.2 Similarity Transformation

In this section the dimensional partial differential equations are converted into the

non-dimensional form by means of the similarity transformation. We introduce

the following dimensionless similarity variable [34]:

ψ = x
√
aνf(η), η =

√
a

ν
y, φ(η) =

C − C∞
C∞

, θ(η) =
T − T∞
Tf − T∞

. (3.11)

The velocity components respectively their derivatives can be transformed as fol-

lows

• u =
∂ψ

∂y
=
∂ψ

∂η

∂η

∂y
=
√
aν xf ′(η)

√
a

v
= axf ′(η) = af ′(η).

• ∂u

∂x
=

∂

∂x

(
axf ′(η)

)
= af ′(η).

• v = − ∂ψ

∂x
= −

√
aν f(η)

• ∂v

∂y
=
∂v

∂η

∂η

∂y
= −

√
aν f ′(η)

√
a

v
= − af ′(η).

The continuity Eq. (3.1) is satisfied identically, that is

∂u

∂x
+
∂v

∂y
= af ′(η)− af ′(η) = 0.
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The momentum Eq. (3.2) becomes

a2x(f ′(η))2 − a2xf(η)f ′′(η) = ν(1− n)
a2

ν
xf ′′′(η)− σB0

2ax

ρf
f ′(η)

+
√

2νnΓ
√
aνxf ′′(η)

a

ν
.
a2x

ν
f ′′′(η)

(3.12)

a2x(f ′(η))2 − a2xf(η)f ′′(η) = (1− n)a2xf ′′′(η) + a2xnWef ′′′(η)f ′′(η)

−σB0
2axf ′(η)

ρf

a2x
[
(f ′(η))2 − f(η)f ′′(η)

]
= a2x [(1− n)f ′′′(η) + nWef ′′′(η)f ′′(η)]

−Mf ′(η),

⇒ (1− n)f ′′′(η) + f(η)f ′′(η)− (f ′(η))2 + nWef ′′′(η)f ′′(η)−Mf ′(η) = 0

⇒ (1− n)f ′′′ + ff ′′ − f ′2 + nWef ′′′f ′′ −Mf ′ = 0. (3.13)

Now we transform the derivatives for the temperature

• θ(η) =
T − T∞
Tf − T∞

T = Tfθ(η)− T∞θ(η) + T∞

∂T

∂y
=

∂

∂y

(
Tfθ(η)− T∞θ(η) + T∞

)
= Tfθ

′
√
a

ν
− T∞θ′

√
a

ν

∂2T

∂y2
=

∂

∂y
(Tfθ

′
√
a

ν
− T∞θ′

√
a

ν
) = θ′′

a

ν
(Tf − T∞)

∂qr
∂y

=
16σ∗T∞

3aθ′′

3k∗ν

∂C

∂y
=

∂

∂y

(
C∞φ

′ + C∞

)
=
∂C

∂η
.
∂η

∂y
= C∞φ

′
√
a

v
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Using the above derivatives, the left side of Eq. (3.3) gets the following form:

u
∂T

∂x
+ v

∂T

∂y
= −
√
aνf(η)

[
Tfθ

′
√
a

ν
− T∞θ′

√
a

ν

]

= −aTfθ′f(η)− T∞aθ′f(η). (3.14)

To convert the right side of Eq. (3.3) into dimensionless form, we proceed as

follows.

α
∂2T

∂y2
+ Λ

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
]
− 1

(ρc)f

∂qr
∂y

= αTf
a

v
θ′′ + Λ

[
DBC∞Tf

a

ν
θ′φ′ +

DT

T∞
a
Tf

2

θ′2
ν

]
+

1

(ρc)f

16σ∗T∞
3aθ′′

3k∗ν
(3.15)

Hence the dimensionless form of Eq. (3.3) becomes:

− Tfafθ′ = αTf
a

v
θ′′ + Λ

[
DBC∞Tf

a

ν
θ′φ′ + Λ

DT

T∞
a
Tf

2

θ′2
ν

]
+

1

(ρc)f

16σ∗T∞
3aθ′′

3k∗ν
,

− fθ′ = α

ν
θ′′ +

(ρc)p
(ρc)f

DB

ν
C∞θ

′φ′ +
(ρc)p
(ρc)f

DTTf
T∞ν

θ′
2

+
4

3

k

(ρc)fν

(
4σ∗T∞

3

kk∗

)
θ′′,

− fθ′ = 1

Pr
θ′′ +Nbθ′φ′ +Ntθ′

2
+

4

3Pr
Nrθ′′,

− Prfθ′ = θ′′ +
4

3
Nrθ′′ + Pr[Nbθ′φ′ +Ntθ′

2
]

(3.16)

− Prfθ′ =
(

1 +
4

3
Nr

)
θ′′ + Pr[Nbθ′φ′ +Ntθ′

2
],

(
1 +

4

3
Nr

)
θ′′ + Pr[fθ′ +Nbθ′φ′ +Ntθ′

2
] = 0. (3.17)
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Next to transform Eq. (3.4) into the dimensionless form, we consider the following

derivatives

• u
∂C

∂x
+ v

∂C

∂y
= DB

(
∂2C

∂y

)
+
DT

T∞

(
∂2T

∂y2

)

• ∂C

∂x
= 0

• ∂C

∂y
=
a

ν
C∞φ

′

• ∂2C

∂y2
=

∂

∂y

(
C∞φ

′ a

ν

)

• v = −
√
aνf(η)

Hence the dimensionless form of Eq. (3.4) becomes:

− afC∞φ′ = DBC∞φ
′′ a

ν
+
DT

T∞
(Tf − T∞)θ′′

a

ν
,

− (ρc)p
(ρc)f

fC∞φ
′ =

(ρc)p
(ρc)f

DBC∞φ
′′ 1

ν
+

(ρc)p
(ρc)f

DT

T∞
(Tf − T∞)θ′′

a

ν
,

−DB

ν

(ρc)p
(ρc)f

C∞fφ
′ ν

α
= Nbφ′′ +Ntθ′′,

−NbPrLefφ′ = Nbφ′′ +Ntθ′′,

− Pr Le fφ′ = φ′′ +
Nt

Nb
θ′′,

φ′′ +
Nt

Nb
θ′′ + Pr Le fφ′ = 0. (3.18)
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After using similarity transformation the equations take the form

(1− n) f ′′′ + ff ′′ − f ′2 −Mf ′ + nWef ′′′f ′′ = 0,(
1 +

4

3
Nr

)
θ′′ + Pr

(
fθ′ +Nbφ′θ′ +Ntθ′

2
)

= 0,

φ′′ + PrLefφ′ +
Nt

Nb
θ′′ = 0.


(3.19)

The associated boundary condition are transformed as follows:

• u = uw + Uslip ⇒ axf ′(η) = ax+ A
a

3
2x(f ′′(η))√

ν
+B

a2x(f ′′′(η))√
ν

• f ′(η) = 1 + A

√
a

ν
(f ′′(η)) +B

a

ν
(f ′′′(η))

(
∵ η =

√
a

ν
y

)
= 1 + γ(f ′′(η)) + δ(f ′′(η))

• v = 0 ⇒
√
aνf(η) V

√
aν 6= 0

• f(η) = 0⇒ f(0) = 0

• − k∂T
∂y

= hf (Tf − T )

− k(Tf − T∞)θ′
√
a

ν
= hf ((Tf − T∞) + θ((Tf − T∞))

− kθ′
√
a

ν
= hf (1 + θ)

• θ′ = −hf
k

√
ν

a
(1 + θ)

θ′(0) = Bi(θ(0)− 1)

(
∵ Bi =

hf
k

√
ν

a

)
• DB

∂C

∂y
+
DB

T∞
= 0

⇒ DBC∞φ
′
√
a

ν
+
DB

T∞
(Tf − T∞)θ′

√
a

ν

⇒ (ρcp)

(ρc)f

√
a

ν
DBC∞φ

′
√
a

ν
+

(ρc)p
(ρc)f

√
a

ν
+DB(Tf −T∞)θ′

√
a

ν

⇒ (ρcp)

(ρc)f
DBC∞φ

′+
(ρc)p
(ρc)f

+DB(Tf−T∞)θ′
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⇒ Nbφ′(0)+Ntθ′(0)

Hence the dimensionless form of the boundary conditions become:

f(0) = 0, f ′(0) = 1 + γf ′′(0) + δf ′′′(0),

θ′(0) = Bi(θ(0)− 1), Nbφ′(0) +Ntθ′(0) = 0,

 at η = 0,

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0, as η →∞.

 (3.20)

The physical parameters appeared in Eq. (3.19) and Eq. (3.20), We represents

the Weissenberg number, Bi the Biot number, Pr is the representation of the

Prandtl number, Nr represents the thermal radiation parameter, M denotes the

magnetic parameter, Le denotes the Lewis number, Nt stands for thermophoresis

parameter, slip velocity of first order is denoted by γ, δ is the slip velocity of second

order and Brownian motion parameter is denoted by Nb. These parameters are

formulated as:

We =
√

2a
2
3 xΓ√
ν

, M =
σB2

0

ρfa
, Bi =

hf
k

√
ν
a
, Pr = ν

α
, Nr = 4σ∗T 3

∞
κ∗k

,

Nb = (ρc)pDB(C∞)

(ρc)fν
, Le = α

DB
, Nt =

(ρc)pDT (Tf−T∞)

(ρc)fνT∞
, γ = A

√
a
ν
, δ = B a

ν
.

3.3 Physical Quantities of Interest

The mathematical expression of skin friction coefficient is defined below:

Cf =
τw
ρu2

w

, (3.21)

and mathematical expression for Nusselt number is:

Nux =
xqw

k(Tf − T∞)
, (3.22)

where τw stands for shear stress whereas qw is representation of heat flux at the

wall, given as:

τw = µ

(
(1− n)

∂u

∂y
+
nΓ√

2

(
∂u

∂y

)2)
, qw = −k

(
1 +

16σ∗T 3
∞

3k∗k

)
∂T

∂y
. (3.23)
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Using the values of ∂u
∂y

= a
3
2 xf ′′(η)√

ν
, we have

Cf =

νρ(1− n)a
3
2 xf ′′(η)√

ν
+ nΓ√

2

(
a
3
2 xf ′′(η)√

ν

)2

ρ(ax)2

Cf =
νa
−1
2 (1− n)

x
√
ν

f ′′(η) +
nΓa√

2
f ′′(η)

2

(
∵ µ = νρ

)

Cf =

√
ν

a

(1− n)f ′′(η)

x
+

√
aν

aν

xn
√

2Γf ′′(η)2

2x

Cf =
(1− n)f ′′(η)√

Rex
+
n

2
f ′′(η)2a

3
2xΓ√
νx

√
ν

a

Cf =
(1− n)f ′′(η)√

Rex
+

n

2
√
Rex

f ′′(η)2We

Cf
√
Rex = (1−n)f ′′(0) +

n

2
Wef ′′(0)2

Nux =
xqw

k(Tf − T∞)

Nux =

x

(
− k
(

1 + 16σ∗T 3
∞

3k∗k

)
∂T
∂y

)
k(Tf − T∞)

Similarly utilizing the values of ∂T
∂y

= θ′(Tf − T∞)
√

a
ν

Nux =

−x
(

1 + 16σ∗T 3
∞

3k∗k

)
θ′(Tf − T∞)

√
a
ν

(Tf − T∞)

Nux = −x
√
a

ν

(
1+

4

3
Nr

)
θ′

Nux√
Rex

=

(
1+

4

3
Nr

)
θ′(0)
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Hence the dimensionless form of Cf and Nux is given as:

Cf
√
Rex =

(
(1− n) +

n

2
Wef ′′(0)

)
f ′′(0),

NuxRe
−1/2
x = −

(
1 +

4

3
Nr

)
θ′(0)

 (3.24)

where Rex = ax2

ν
denotes the local Reynolds number.

3.4 Numerical Technique

The system of higher order ODEs is converted into first order ODEs. The pre-

scribed boundary conditions are also converted into first order system of ordinary

differential equations (ODEs). The first order system of ordinary differential equa-

tions including the related boundary conditions is solved numerically by the use

of MATLAB built-in function bvp4c.

f ′′′ =
1

1− n+ nWef ′′

[
f ′

2

+Mf ′ − ff ′′
]
,

θ′′ = − 3Pr

3 + 4Nr

[
fθ′ +Nbφ′θ′ +Ntθ′

2

]
,

φ′′ = −PrLefφ′ − Nt

Nb
θ′′,


(3.25)

along with the boundary condition:

f(0) = 0, f ′(0) = 1 + γf ′′(0) + δf ′′′(0), θ′(0) = Bi(θ(0)− 1),

Nbφ′(0) +Ntθ′(0) = 0, as η = 0,

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0, as η →∞

 . (3.26)

By using the following notations:

f = y1, f ′ = y2, f ′′ = y3, f ′′′ = y′3,

θ = y4, θ′ = y5, θ′′ = y′5,

φ = y6, φ′ = y7, φ′′ = y′7.

(3.27)
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The system of first order ODEs are given as:

y′1 = y2

y′2 = y3

y′3 =
1

(1− n) + nWey3

[
y2

2 +My2 − y1y3

]
y′4 = y5

y′5 =
−3Pr

3 + 4Nr

[
y1y5 +Nby7y5 +Nry2

5

]
y′6 = y7

y′7 = −PrLey1y7 −
Nt

Nb
y′5

(3.28)

along with the initial condition which are

y1(0) = 0, y2(0) = 1 + γy3(0), y5(0) = Bi(y4(0)− 1),

Nby7(0) +Nty5(0) = 0 as η → 0.

 (3.29)

In Table 3.1, comparison of the local skin friction coefficient by use of various

values of parameter M is displayed. Furthermore, the obtained numerical results

are compared with Ibrahim [34] and achieved a good agreement.

3.5 Result and Discussion

The main purpose of this part is to analyze the velocity, temperature, and con-

centration profiles. The computations are takenout for the influence of various

natural parameters like, the Prandtl number, the power-law index, the brownian

motion parameter, the Weissenberg number, the thermal radiation parameter, the

Biot number, first order slip parameter and second order slip parameter on the

Nusselt number and skin friction coefficient. Table 3.2 is prepared to study the

impact of various parameters on the coefficient of skin friction. It is observed that

for enhancing the Power-law index and the magnetic parameter the skin friction

is reduced. For the increasing values of the Weissenberg number We, first order

slip Parameter γ, and second order slip parameter δ the skin friction coefficient
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Table 3.1: Numerical results of skin friction for increasing values of M with
We = δ = n = γ = 0.

M Ibrahim [34] Present

0.0 1.0000 1.0001

0.25 1.1180 1.1180

1 1.4142 1.4142

5 2.4495 2.4494

10 3.3166 3.3166

50 7.1414 7.1414

100 10.0499 10.0499

500 22.3830 22.3830

1000 31.6386 31.6386

is declined. To analyze the impact of Power-law index (n) on velocity, energy

and concentration fields. Figures 3.2 and 3.3 are sketched. It is noticed that for

enhancing the value of physical parameter called Power-law index, the velocity

field is decreased while temperature profile is increased. Physically, the parameter

n, defines the shear thickning behaviour of fluid. Therefor, as magnitude of n

is increased more resistance is provided to the fluid due to this reason velocity

is reduced. Figure 3.4 shows that, for some growing values of n, concentration

profile is increasing function of parameter n. Figure 3.5 and Figure 3.6 demon-

strate the impact of Weissenberg number on velocity distribution and temperature

distribution. The Weissenberg number is defined as, the ratio of relaxation time

and the time-scale of the fluid flow. By enhancing the values of the Wiessenberg

number, momentum boundary layer and the velocity distribution is reduced. For

enhancing values of We the relaxation time increases, that permit more resistance

to the flow, because of this reason the temperature field and thickness of related

boundary layer is increased. Figure 3.7 reflects the influence of first order slip

on velocity field, by increasing the value of first order slip parameter, velocity
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Table 3.2: Numerical results of skin friction −f ′′(0) for gradually increasing
values of physical parameters.

f ′′(0)
We n M γ δ Ibrahim [34] present

0.1 0.3 0.2 1 -1 0.3317 0.3317
0.2 0.3312 0.3312
0.3 0.3308 0.3308

0.1 0.3287 0.3286
0.2 0.3300 0.3301
0.3 0.3308 0.3305

0.1 0.3288 0.3288
0.2 0.3308 0.3301
0.5 0.3307 0.3306
0.2 0.3308 0.3308

2 0.2477 0.2477
3 0.1978 0.1978
2 0.2477 0.2477

-2 0.2053 0.2053
-3 0.1770 0.1770

field started decreasing and hydrodynamic boundary layer is thinner. From Fig-

ure 3.8 and Figure 3.9 it is observed that temperature and concentration field is

increasing function of γ. Figure 3.10 shows the impact of slip parameter of second

order on velocity field. By enhancing the value of slip parameter δ, velocity field

started decreasing and hydrodynamic boundary layer is thinner. Figure 3.11 and

3.12 demonstrate the effect of second order slip parameter on temperature field

and concentration profile, it is clear that slip parameter is enhancing function of

temperature and concentration profile. Figure 3.13 shows the impact of thermal

Radiation parameter Nr, here it is shown that temperature field is increased as

magnitude of Nr is increased. This is because of the fact that an increment in

the values of Nr tend to reduce the thickness of the momintum boundary surface

and increase the rate of heat transfer. Figure 3.14 explained the effect of the Biot

number Bi on temperature field. By increasing the value of dimensionless param-

eter Bi, the temperature at the surface is increased which increases the thermal

boundary layer. Physically, the Biot number is basically the ratio between resis-

tance of the heat transfer in the body to the resistance at body surface. This is
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because of the fact that convective heat exchange along the surface will enhance

the momentum boundary layer. Impact of the Prandtl number for the variation of

temperature distribution is visualized in Figure 3.15, this figure gives the evident

that fluid with increasing values of the Prandtl number represent weak energy

diffusion so for higher values of the Prandtl number results a strong reduction in

temperature field.
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Figure 3.2: Effect of n on f ′(η).
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Figure 3.3: Effect of n on θ(η).
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Figure 3.4: Effect of n on φ(η).
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Figure 3.5: Effect of We on f ′(η).
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Figure 3.6: Effect of Bi on θ(η).

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

=1
=3
=5
=7

 = -1 M = 0.2, Le = 5, Pr = 0.7, We = 0.3,
 Bi = 0.2, Nb = 0.5, Nt = 0.5, Nr = 0.8.

Figure 3.7: Effect of γ on f ′(η).
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Figure 3.8: Effect of γ on θ(η).
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Figure 3.9: Effect of γ on φ(η).
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Figure 3.10: Effect of δ on f ′(η).
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Figure 3.11: Effect of δ on θ(η).
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Figure 3.12: Effect of δ on φ(η).
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Figure 3.13: Effect of Nr on θ(η).
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Figure 3.14: Effect of Bi on θ(η).
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Figure 3.15: Effect of Pr on θ(η).



Chapter 4

Impact of Chemical Reaction and

Joule Heating on MHD Nanofluid

The main purpose of this section is to examine the magneto-hydrodynamic tangent

hyperbolic fluid flow along a sheet under the effect of Joule heating and chemical

reaction. Nonlinear PDEs are converted in to a system of ODEs by using an

appropriate similarity transformation. We have achieved the numerical solution of

the system of ODEs by using the technique namely the shooting technique along

with Runge-Kutta method of order four. The results for different parameters for

velocity, energy and concentration profile are deliberated through graphical and

tabular form.

4.1 Mathematical Modeling

The Laminar, two-dimensional and steady MHD tangent hyperbolic nanofluid

taken along a stretching surface, is considered. It has been assumed that the fluid

under investigation is taken as viscous and incompressible. In addition to the

assumption as described in Section 3.2, the Joule heating and chemical reaction

impact has also been incorporated.

40
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Under the above constraint the related equations are given as:

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
= ν(1− n)

∂2u

∂y2
+
√

2νnΓ

(
∂u

∂y

)
∂2u

∂y2
− σB0

2u

ρf
, (4.2)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂y2

)
+ Λ

[
DB

(
∂C

∂y

)(
∂T

∂y

)
+
DT

T∞

(
∂T

∂y

)2]
− 1

(ρc)f

∂qr
∂y

+
σB0

2u2

ρf
, (4.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

(
∂2T

∂y2

)
−Kr(C − C∞). (4.4)

The related boundary conditions are as follows [34]:

u = uw, − k∂T
∂y

= hf (Tf − T ),

v = 0, DB
∂C

∂y
+
DB

T∞

∂T

∂y
= 0,

 at y = 0

U → U∞, v = 0, T → T∞, C → C∞ as y →∞.


(4.5)

Here ρ stands for density of nanoparticles, u and v define velocity components, DT

is thermophoresis diffusion coefficient, k represents the thermal conductivity, DB

the Brownian diffusion coefficient, T∞ denotes the ambient temperature, Λ= (Cp)p
(Cp)f

,

(Cp)p is the fluid’s specific heat capacity of nanoparticles, (Cp)f the heat capacity

of the fluid and Γ represents the time constant.

4.2 Similarity Transformation

In this section similar to Chapter3, we transform the system of PDEs along with

boundary condition into a dimensionless form by using appropriate similarity

transformations. The similarity transformation used are as follows:

ψ =
√
aνxf(η), η =

√
a

ν
y, φ(η) =

C − C∞
C∞

, θ(η) =
T − T∞
Tf − T∞

. (4.6)
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The velocity components in terms of the stream functions are given as,

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (4.7)

As a result Eq. (4.1) is satisfied identically and equations (4.2)-(4.4) take the form

(1− n) f ′′′ + ff ′′ − f ′2 −Mf ′ + nWef ′′′f ′′ = 0,(
1 + εθ +

4

3
Nr

)
θ′′ + Pr

[
fθ′ +Nbφ′θ′ +Ntθ′

2

+MEcf ′
2
]

= 0,

φ′′ +
Nt

Nb
θ′′ + fScφ′ + Sck1φ = 0.


(4.8)

The transformed boundary conditions are:

f(0) = 0, f ′(0) = 1,

θ′(0) = Bi(θ(0)− 1), Nbφ′(0) +Ntθ′(0) = 0,

 at η = 0,

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0, as η →∞.

 (4.9)

In Eq. (4.8) and Eq. (4.9), We represents the Weissenberg number, Bi the Biot

number, Pr represents the Prandtl number, Brownian motion parameter is de-

noted by Nb, M denotes the magnetic parameter, Le stands for the Lewis number,

Nt is thermophoresis parameter, Ec represents the Eckert number and radiation

parameter is denoted by Nr. These parameters are formulated as:

Nt =
(ρc)pDT (Tf−T∞)

(ρc)fνT∞
, Bi =

hf
k

√
ν
a
, Pr = ν

α
, Nr = 4σ∗T 3

∞
κ∗k

, M =
σB2

0

ρfa
,

Sc = ν
DB

, Nb = (ρc)pDB(C∞)

(ρc)fν
, Nt =

(ρc)pDT (Tf−T∞)

(ρc)fνT∞
, We =

√
2a

2
3 xΓ√
ν

.

4.2.1 Physical Quantities of Interest

The dimensional form of skin friction coefficient Cf is:

Cf =
τw
ρu2

w

, (4.10)
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and the dimensional form of Nusselt number Nux is

Nux =
xqw

k(Tf − T∞)
, (4.11)

where wall shear stress is represented by τw whereas the wall heat flux is denoted

by qw both are represented as:

τw = µ

(
(1− n)

∂u

∂y
+
nΓ√

2

(
∂u

∂y

)2)
, qw = −k

(
1 +

16σ∗T 3
∞

3k∗k

)
∂T

∂y
. (4.12)

The local skin friction coefficient and the local Nusselt number in non-dimensional

form which is:

Cf
√
Rex =

(
(1− n) +

n

2
Wef ′′(0)

)
f ′′(0),

NuxRe
−1/2
x = −

(
1 +

4

3
Nr

)
θ′(0).

 (4.13)

where Rex = ax2

ν
is defined the local Reynolds number.

4.3 Numerical Solution

The solution of the system of equation (4.8) along with boundary conditions (4.9)

can achieved by use of shooting technique.

In order to solve the system of equation with shooting technique we convert the

ODEs into first order ODEs. Equation (4.8) can be rewritten as,

f ′′′ =
1

(1− n) + nWef ′′
[f ′

2

+Mf ′ − ff ′′],

θ′′ = − Pr(
1 + εθ + 4

3
Nr

) [fθ′ +Nbφ′θ′ +Ntθ′
2

+MEcf ′
2
]
,

φ′′ =
Nt

Nb
θ′′ − fScφ′ − Sck1φ.


(4.14)
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Boundary condition in dimensionless shape is:

y1(η) = 0, y2(η) = 1, y5(η) = Bi(y4(η)− 1),

Nby7(η) +Nty5(η) = 0, as η = 0,

y2(∞)→ 0, y4(∞)→ 0, y6(∞)→ 0, as η →∞

 . (4.15)

By using such notations which are:

f = y1, f ′ = y2, f ′′ = y3, f ′′′ = y′3,

θ = y4, θ′ = y5, θ′′ = y′5,

φ = y6, φ′ = y7, φ′′ = y′7,

 . (4.16)

The system of first order ODEs are given as:

y′1 = y2

y′2 = y3

y′3 =
y2

2 +My2 − y1y3

(1− n) + nWey3

y′4 = y5

y′5 =
−Pr(y1y5 +Nby7y5 +Nty2

5 + 2MEcy2
2)(

1 + εθ + 4
3
Nr

)
y′6 = y7

y′7 = −Scy1y7 − Sck1y7 +
Nt

Nb
y′5



(4.17)

along with boundary conditions which are given below,

y1(0) = 0, y2(0) = 1, y3(0) = l, y4(0) = m

y5(0) = Bi(t− 1), y6(0) = n, y7(0) = −Nt
Nb

Bi(t− 1).

 (4.18)

To solve the boundary value problem (4.3)-(4.3) with the help of shooting tech-

nique seven initial conditions are needed. So, we initialize y3(0) = L, y4(0) = m

and y6(0) = n in such a way that three unknown boundary conditions are almost
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satisfied for growing values of η i.e η →∞. Newton method is used to modify ini-

tial guesses l, m and n until the desired approximation meet. For iterative process

we have defined the criteria where process is stopped that is given as

max(|y2(ηmax)− 0|, |y5(ηmax)− 0, |y7(ηmax)− 0|) < ζ,

where ζ is a real number which is very small. For all the computation in the

remaining part of this dissertation, ζ will be same as 10−5.

4.4 Result and Discussion

The demonstration of this part is to analyze numerical results represented in the

form of graphs and tables. Impact of different parameters such as the Prandtl

number (Pr), the Biot number (Bi), the Brownian motion parameter (Nb), the

power-law index, the Weissenberg number (We), radiation parameter (Nr) and

thermophoresis parameter Nt on temperature distribution, velocity distribution

and concentration profile are shown. We will see that as we are increasing the

values of Magnetic parameter (M), Prandtl number (Pr) and power-law index (n)

results a decline in the Nusselt number while an increment is shown in skin friction

coefficient.

Impact of Magnetic Parameter M

Impact of magnetic parameter on velocity distribution and temperature distribu-

tion is presented in Figure 4.1 and Figure 4.2. Figure 4.1 is drawn to visualize

that the velocity distriution is reduced for the enhancing values of the M where

the temperature profile is enhanced as evident from Figure 4.2.

Physically, increase in magnetic field increases the Lorentz forces which is retarding

force because of this reason fluid motion is declined and energy field is enhanced.
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Table 4.1: numerical results of skin friction −f ′′(0) and Nusselt number −θ′(0)
for distinct values of Ec, Sc,Nb and Nt.

−f ′′(0) −θ′(0)

M n We Bi Pr shooting bvp4c shooting bvp4c

0.2 0.3 0.3 0.2 2 1.3924 1.3924 0.1414 0.1414

0.3 1.4535 1.4535 0.1407 0.1407

0.4 1.5126 1.5126 0.1407 0.1407

0.2 1.2650 1.2650 0.1424 0.1424

0.4 1.5853 1.5853 0.1400 0.1400

0.2 1.3620 1.3620 0.1415 0.1415

0.5 1.4664 1.4664 0.1411 0.1411

1.5 1.3924 1.3924 0.3546 0.3546

2 1.3924 1.3924 0.1284 0.1284

0.7 1.3924 1.3924 0.1237 0.1237

1 1.3924 1.3924 0.1284 0.1284

Impact of Power-law Index n

The effect of the parameter power-law index for velocity field and temperature field

is presented in Figure 4.3 and Figure 4.4. From figures 4.3 and 4.4 it is clear that

an increment in power-law index n, velocity field is decreased. The dimensionless

parameter n defines the shear thinning behaviour of fluid, therefore by increasing

the magnitude of n, more resistance is provided to fluid velocity due to this reason

the flow of fluid is decreased.

Impact of Weissenberg Number We

The dimensionless parameter We is the ratio of fluid relaxation, due to increasing

the values of Weissenberg number (We) the fluid’s relaxation time increases, which
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allow extra resistance to the flow. Figure 4.5 demonstrate the impact of the

Weissenberg number. From figure it is clear that, for enhancing values of the

Weissenberg number We, temperature profile increases which causes the effect of

the thickness of momentum boundary layer.

Impact of Prandtl Number Pr

Figure 4.6 is drawn to analyze the impact of the Prandtl number (Pr) on tem-

perature field. It is observed that for increasing value of the Prandtl number

temperature field decreases, this is due to the fact that an decrement is seen in

the rate of heat transfer for enhancing values of Pr. The impact of the Prandtl

number on concentration profile is portrays in Figure 4.7. It portrays that an

increment in (Pr) results a reduction in concentration field.

Impact of Thermophoresis Parameter Nt

Figure 4.8 and Figure 4.9 are presented to visualize the effect of thermophoresis

parameter on the temperature and concentration profile. In figures, it is observed

that temperature profile and concentration profile show an increment for growing

values of dimensionless parameter Nt. Physically, heated particles comes away

from high temperature as compared to low-temperature so the temperature of

fluid increases.

Impact of Radiation Parameter Nr

Impact of Radiation parameter is shown in Figure 4.10. It is seen that for gradually

enhancing values of Nr energy profile also increased. Due to increase in thermal

Radiation parameter more heat to fluid produces that enhance the energy filed
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and momentum boundary layer. Figure 4.11 also represents that concentration

profile is increased for increasing values of radiation parameter.

Impact of Biot Number Bi

Figure 4.12 is presented to visualize the effect of the Bi on temperature distribu-

tion. This figure defines that temperature profile enhances as the Biot number Bi

is increased gradually. Physically, the Biot number defines the ratio between re-

sistance rate of heat transfer inside the body to the resistance at the body surface.

The reason behind is that convective heat exchange at the surface will raise the

boundary layer thickness therefore the nanofluid with convective boundary con-

dition is more effective model as compared to the constant surface temperature

state.

Impact of Small Parameter ε

To illustrate the impact of small parameter ε which is associated with the variable

thermal conductivity on the temperature field, Figure 4.14 represents that by

enhancing the values of small parameter ε temperature profile also enhanced.
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Figure 4.1: Effect of M on f ′(η).
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Figure 4.2: Effect of M on θ(η).
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Figure 4.3: Effect of n on f ′(η).
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Figure 4.4: Effect of n on θ(η).
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Figure 4.5: Effect of We on θ(η).
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Figure 4.6: Effect of Pr on θ(η).
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Figure 4.7: Effect of Pr on φ(η).
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Figure 4.8: Effect of Nt on θ(η).
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Figure 4.9: Effect of Nt on φ(η).
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Figure 4.10: Effect of Nr on θ(η).
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Figure 4.11: Effect of Nr on φ(η).
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Figure 4.12: Effect of Bi on θ(η).
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Figure 4.13: Effect of Bi on φ(η).
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Figure 4.14: Effect of ε on θ(η).



Chapter 5

Conclusion

In this thesis, we reviewed the work of Ibrahim [35] and analyse the effect of chemi-

cal reaction and Joule heating. First of all momentum equations, energy equations

and concentration equations converted into the ODEs by using an appropriate

transformation called similarity transformation. By using the shooting technique,

numerical solution has been found for these modeled ODEs. Using different values

of governing physical parameters we found results in the form of tables and graphs

for velocity profile, temperature profile and concentration profile. Concluding all

arguments and results we summarized our findings as follows:

• An increment in the values of the magnetic parameter and power-law index,

energy profile is reduced while temperature profile is enhanced.

• For enhancing values of the Weissenberg number, thickness of momentum bound-

ary layer enhances .

• Decrement in temperature profile and concentration profile is observed for in-

creasing values of the prandtl number.

• The Nusselt number increases for increasing values of the thermophoresis pa-

rameter Nt, radiation parameter Nr and the Biot number Bi.

• It is reported that for enhancing values of the radiation parameter Nr, ther-

mophoresis parameter Nt, and the Biot number Bi, concentration profile also

enhanced.
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